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Abstract

Object-centric representation learning aims to decompose
visual scenes into fixed-size vectors called “slots” or “object
files”, where each slot captures a distinct object. Current
state-of-the-art object-centric models have shown remark-
able success in object discovery in diverse domains, includ-
ing complex real-world scenes. However, these models suffer
from a key limitation: they lack controllability. Specifically,
current object-centric models learn representations based
on their preconceived understanding of objects and parts,
without allowing user input to guide which objects are repre-
sented. Introducing controllability into object-centric models
could unlock a range of useful capabilities, such as the abil-
ity to extract instance-specific representations from a scene.
In this work, we propose a novel approach for user-directed
control over slot representations by conditioning slots on
language descriptions. The proposed CONTROLLABLE
OBJECT-CENTRIC REPRESENTATION LEARNING approach,
which we term CTRL-O, achieves targeted object-language
binding in complex real-world scenes without requiring mask
supervision. Next, we apply these controllable slot represen-
tations on two downstream vision language tasks: text-to-
image generation and visual question answering. We find
that the proposed approach enables instance-specific text-to-
image generation and also achieves strong performance on
visual question answering.

1. Introduction
Object-centric representation learning aims to decompose a
visual scene into its constituent entities or objects and repre-
sent each entity as a distinct vector called a slot. Slot-based
representations are inherently compositional and support
many complex downstream tasks such as dynamics model-

*denotes equal contribution, order is determined by flipping coin
†denotes equal advising

ing [12, 43], control [6, 7, 16, 49], and reasoning [1, 29].
Moreover, studies in cognitive neuroscience [35, 41] have
shown that human perception uses mechanisms akin to slot-
based representations.

Existing unsupervised object-centric models [6, 9, 10, 28,
39] can successfully decompose complex real-world visual
scenes. However, they face a fundamental limitation: they
lack control over the object representations. While these
models expose control over the number of scene parts, they
do not allow users to extract specific object representations
within a scene (e.g., specified by user queries in the form
of language or position markers). For instance, a user can
specify that a scene should be decomposed into K slots, but
they cannot direct a given slot to bind to a particular object
of interest such as “a cat” or “a black purse”.

This lack of control over the semantic content of the repre-
sentation can be limiting, as this restricts the model always to
extract a fixed decomposition of a scene based on its own pre-
conceived understanding of objects and parts. Such rigidity
can be problematic for applications that require representa-
tions at varying granularity, such as extracting the represen-
tation of a car wheel instead of the entire car, or vice versa.

Moreover, many downstream tasks may require or benefit
from the knowledge of the semantic content in the slots. Due
to the unsupervised nature of existing models, there is no way
to identify the content of a slot without manually checking
its corresponding mask. For example, if the user needs repre-
sentations of the cat and a dog in a particular image to answer
a question, they would have to manually inspect masks of
all discovered objects to pick the corresponding slots.

To address these limitations, we propose to inject con-
trollability into object-centric representation learning. We
achieve this by querying the model to represent specific ob-
jects in the image. Specifically, these queries condition the
slot vectors to guide them to the objects described by the
query. The queries can be in the form of natural language
(such as object category names or referring expressions).
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The main challenge is to ensure that the slots conditioned on
a specific query bind to the object referred to by that query.
We term the challenge of binding slots to specific objects
the visual grounding problem [15, 20, 34, 46]. We find that
this problem is not trivial and introduce a novel controllable
object-centric model — CTRL-O — to solve it. In our ex-
periments, we demonstrate that the proposed approach can
successfully bind slots to objects specified by user queries
containing object categories or referring expressions in com-
plex real-world scenes with limited supervision. In addition,
we demonstrate the usefulness of the extracted controllable
representations for two downstream tasks: visual question
answering and instance-controllable image generation. Our
contributions are as follows:
• We introduce CTRL-O, a novel method to learn control-

lable object-centric representations via user-defined inputs.
• We demonstrate that this approach supports extracting rep-

resentations for complex reference expressions, enabling
precise part specification within the representation.

• We validate the effectiveness of CTRL-O on two
real-world downstream tasks: Instance-Controllable
Image Generation and Visual Question Answering.

2. Related Works

Object-Centric Representation Learning Unsupervised
object-centric representation learning (OCL) has gained a lot
of interest in recent years [3, 5, 6, 9, 10, 14, 22, 28, 39, 50].
OCL aims to extract individual representations for various
entities in unstructured sensory inputs such as images. Slot
Attention [28] introduces an attention-based mechanism to
decompose images into object-centric representations. DI-
NOSAUR [39] builds upon this by utilizing self-supervised
DINO features [4, 33] to enhance unsupervised object dis-
covery. While DINOSAUR can effectively identify objects in
real-world data [26], it lacks mechanisms for top-down con-
trol over the representations. In contrast, CTRL-O provides
controllable OCL by incorporating language-based control
queries, allowing for flexible guidance with minimal supervi-
sion during training. Some works [22, 23] have explored con-
ditioning mechanisms in object-centric models. SAVi [22]
uses bounding boxes for the initial frame of a video for
conditioning. CoSA [23] conditions on learned vector repre-
sentations. These methods are often limited to specific forms
of conditioning and are primarily evaluated on synthetic
datasets, while our method can handle many forms of condi-
tioning on real-world data. Finally, several recent works con-
nect object-centric representations with language [11, 21].
These works connect object representations with language
post-hoc, assigning language labels to discovered slots. In
contrast, CTRL-O integrates language and point condition-
ing directly into the learning process, allowing a user to
control what representations should be extracted.

Downstream tasks with object-centric representations
There has been limited work exploring the applicability of
object-centric models to downstream tasks. Slotformer [43]
uses the learned slots for world modelling and video
question answering. Zadaianchuk et al. [49], Yoon et al.
[48] and Didolkar et al. [6] investigate the applicability
of object-centric representations for learning RL policies
in simple environments such as Atari [32]. One drawback
of these works is that they mainly consider synthetic
environments and toy tasks; thus, their applicability is
limited. In contrast, in this paper, we consider downstream
applications in complex real-world environments. There are
only a few works that study applications of object-centric
representations in real-world settings. Mamaghan et al [29]
investigate the application of object-centric representations
in Visual Question Answering. We consider them as a
baseline for our experiments on VQA. Slot Diffusion [44]
and Stable LSD [19] use object-centric representations
for generating real-world images. However, both these ap-
proaches lack controllability; hence, it is difficult to specify
any conditioning information or control the images that
these approaches generate. In contrast, we demonstrate in
Section 4.3, that CTRL-O, when used for image generation,
provides fine-grained control over the image generation.

3. Method
In this section, we describe the proposed approach for inject-
ing controllability into existing object-centric models. We
present a visual depiction of our method in Fig. 1.

In our setup, the input consists of an image X and
user-defined queries embedded into vectors L = {lj ∈
RDemb}Mj=1. The expected object-centric representation of
the image X is a set of slots S = {si ∈ RDslot}Ni=1. The
first M slots (we assume that M ≤ N ) should represent
the object identified by the corresponding queries, while the
remaining slots represent the unspecified parts of the scene.
This way, the obtained representation is a complete decom-
position of the whole image X , while still containing the
parts corresponding to the user-specified queries L.

We consider controllability in the form of language
queries. We rely on the user to provide free-form text
specifying object categories or object referring expres-
sions whose visual representations are sought after. We
encode this text into a fixed-sized vector embedding using
LLM2Vec [2] with LLaMA-3-8BLLaMA-3-8B [31] to
obtain these embeddings. These language embeddings
comprise the queries we feed into the model.

3.1. CTRL-O Architecture
Background We base the proposed approach on
DINOSAUR [39]. DINOSAUR uses the Slot Attention
module [28] for object discovery. Slot Attention is an
attention-based differentiable clustering procedure which,
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Figure 1. (a) Overview of CTRL-O architecture. An input image is processed by a frozen DINOv2 ViT model f , yielding patch features H .
These features are then transformed into H ′ by a learnable transformer encoder g to align the feature space with the control queries. The
control queries are introduced in the Slot Attention (SA) module, which guides the grouping of the encoded features into slots S. The initial
slots in the SA module are conditioned with the control queries. Finally, an MLP decoder d, conditioned on control queries, reconstructs the
DINOv2 features. (b) To ensure that slots utilize query information to represent specific objects, we apply a contrastive loss between control
queries and the Slot Attention-modulated weighted DINO features Aslot (referred to as weighted DINO slots).

given a grid of features H = {hk}Kk=1 = f(X) obtained
from an encoder f (we use DINOv2 [33]) applied to
an image X , outputs a set of slots S such that each slot
represents a distinct object in the image. We refer the reader
to App. A for a detailed description of DINOSAUR.

Query-based Slot Initialization We are trying to solve the
visual grounding problem: given the query corresponding to
an object in the image, we want a slot to bind to exactly that
object. The most straightforward way to enforce grounding
is to condition the slots directly on the query corresponding
to each object. Specifically, we achieve this by adding
the object query li to one of the slots (see Fig. 1, input to
the Slot Attention Module). This approach is similar to
SAVi [22], which conditions each slot on the center of mass
information for each object. In our experiments, we find that
simply conditioning the slots on the queries does not lead
to correct grounding; hence, a stronger signal is needed to
ensure proper grounding.

Decoder Conditioning Similar to DINOSAUR, we use a
broadcast MLP decoder, separately decoding each slot into
patch features. We empirically find that conditioning the
decoder on the corresponding control queries improves lan-
guage grounding (concrete evaluation presented in Table 1.
To implement this, we concatenate the resulting slots with

the control queries and pass them through an MLP whose
output is fed into the patch decoder as shown in Fig. 1 (a).

3.2. Control Contrastive Loss to Enforce Grounding
To enforce grounding, we introduce a contrastive loss, as
illustrated in Fig. 1 (b). The intuition behind this objective
is that if a slot si is conditioned on a query li corresponding
to the object oi, then we want the encoder features corre-
sponding to the slot si to be close in embedding space to
the query li. To obtain the features corresponding to slot si,
we spatially aggregate the features output by the mapping
network (learnable mapping g in Fig. 1 (a)) by weighting
them with the attention scores of slot si, obtained from the
last iteration of slot attention: zi =

∑K
k=1 aikhk, where

aik denotes the attention score of slot si on feature hk. We
further process zi using an MLP to output zemb

i , which is
used in the contrastive loss.

Note that we do not directly use the slots for the con-
trastive loss because the loss can be trivially satisfied by the
slots as they are conditioned on the control queries, which
are the targets for the contrastive loss.

For the contrastive loss, we use (zemb
i , li) as positive pairs

which should be similar, and (zemb
i , lt) as negative pairs

which should be dissimilar, with t ̸= i. Note that for the
negatives, we consider all the conditioning queries across
the entire batch. Considering that there are T conditioning
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Slot Init. GT Masks CL DC Binding Hits FG-ARI mBO

✓ ✓ ✗ ✗ 71.2 69.8 35.4

✓ ✗ ✗ ✗ 8.1 34.52 22.42

✓ ✗ ✗ ✓ 10.11 43.83 25.76

✓ ✗ ✓ ✗ 56.3 44.8 27.3

✓ ✗ ✓ ✓ 61.3 47.5 27.2

Table 1. CTRL-O Model Component Ablation for Grounding.
Importance of various components for achieving strong grounding.
Here, we use COCO train set for training and val set for evaluation.
CL = Contrastive Loss, DC = Decoder Conditioning.

Approach Model FG-ARI mBO

Unsup.

DINOSAUR (MLP Dec.) [39] 40.5 27.7
DINOSAUR (TF. Dec.) [39] 34.1 31.6
Stable-LSD [19] 35.0 30.4
SlotDiffusion [44] 37.3 31.4

Weak Sup.
Stable-LSD (Bbox Supervision) [40] - 30.3
CTRL-O (Trained on COCO) 47.5 27.2

Table 2. Object Discovery Performance. Comparison of
CTRL-O with unsupervised and weakly-supervised object-centric
approaches on the COCO dataset.

queries in the entire batch, the loss for a single sample is
formalized as follows:

Ll
CC = −

M∑
i=1

log
exp(zemb

i · li/τ)∑T
t=1 exp(z

emb
i · lt/τ)

(1)

Here, τ is the temperature, which is set to 0.1. We assume
two training regimes: when only language queries li
are available and when both language queries li, and
center-of-mass point queries pi are provided during training.
In the first regime, we define control contrastive loss LCC

as simply Ll
CC . In the second regime, control contrastive

loss LCC is defined as the sum of two losses with language
and point queries: LCC = Ll

CC + Lp
CC . We incorporate

control contrastive loss LCC in addition to the feature
reconstruction loss from DINOSAUR. For additional
implementation details, see App. B.

4. Experiments
In this section, we first show that CTRL-O learns to bind
to the right regions in the image given complex natural
language queries. Next, we tackle two downstream tasks
— instance-specific image generation and visual question
answering — using a pretrained CTRL-O model.

4.1. Grounding Object-Centric Models
We study CTRL-O across two axes: 1) Object Discovery —
How well can CTRL-O discover and represent each object
separately in a scene?, and 2) Grounding — Can the slot
conditioned on some language query lj bind to the region
specified by that language query?

Metrics To evaluate object discovery, we use standard
metrics such as adjusted rand index (ARI) [18] and mean
best overlap (mBO) [36]. To measure grounding, we intro-
duce a new metric called Binding Hits which measures the
grounding accuracy of the conditioned slots. Refer to App. F
for more details regarding these metrics.

Datasets We use COCO [26] and Visual Genome [24] as
our main datasets of study. COCO and Visual Genome both
contain natural scenes with multiple objects. COCO con-
tains category annotations spanning 91 different categories
while Visual Genome contains region descriptions. COCO
contains object annotations along with corresponding
segmentation masks; we use it for quantitative evaluation
of CTRL-O on object discovery and grounding. Visual
Genome does not contain segmentation masks; hence, we
only evaluate on it qualitatively. As several images in COCO
contain multiple instances of the same object category,
conditioning multiple slots on the same category name
can be ambiguous for the model. Also, such conditioning
poses problems for reliably computing the Binding Hits
metric. Therefore, to disambiguate multiple instances of
the same object category, we condition the slots on both
category names and center of mass coordinates. We embed
the language query using Meta-LLaMA-8B and the center
of mass coordinates using a 2-layered MLP and concatenate
them into a conditioning vector.

Object Discovery (Table 2) We compare CTRL-O to
various unsupervised and one weakly-supervised object dis-
covery method. All the methods considered in Table 2 ap-
ply Slot Attention to the features of a pretrained encoder
to extract slots. Following DINOSAUR, this has become
the standard in unsupervised object discovery. The weakly-
supervised approach, Stable LSD (w/ bbox supervision) [40],
uses bounding boxes to supervise the Slot Attention alpha
masks. CTRL-O conditions the slots on language and cen-
ter of mass queries and also uses the same information for
contrastive loss. Therefore, CTRL-O can be classified as a
weakly-supervised approach. Note that we do not use any
of the guidance information to directly supervise the Slot
Attention masks; thus, our form of supervision is weaker
as compared to Stable LSD (w/ bbox supervision). In Ta-
ble 2, we show that CTRL-O outperforms all unsupervised
approaches in terms of ARI but lags behind in terms mBO.
The lower performance in terms of mBO can be attributed
to the MLP decoder of the underlying DINOSAUR model,
which also obtains a lower mBO. We find that a transformer
decoder [39] or a diffusion decoder [19, 40, 44] results in
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The dog The face of the boy Phone Pillow

Trees lining the
street

The man in the grey
sweetshirt

A man in a red long-
sleeved shirt

The orange bag on
the skier's back.

The brown pants worn
by the skier.

Beautiful green
trees in ice

Man going down ski
slope The snow is white

Figure 2. Referring Expression Controllability on Visual Genome. Visualization CTRL-O with free-form queries. The original
image (left) and predicted segmentation masks are shown, with conditioning phrases presented above the corresponding segmented image;
unconditioned slots have no phrase.

Methods Sup. Image-text Fine RefCOCO RefCOCO+ Gref
pretraining dataset tuning val testA testB val testA testB val

GroupViT [45] T CC12M+YFCC ✗ 7.99 6.16 10.51 8.49 6.79 10.59 10.68
✓ 10.82 11.11 11.29 11.14 10.78 11.84 12.77

MaskCLIP [51] T WIT ✗ 11.52 11.85 12.06 11.87 12.01 12.57 12.74
✓ 19.45 18.69 21.37 19.97 18.93 21.48 21.11

Shatter & Gather [21] T VG ✗ 21.80 19.00 24.96 22.20 19.86 24.85 25.89

CTRL-O T VG ✗ 21.80 20.10 21.57 21.90 21.54 21.36 25.32
CTRL-O T + P VG ✗ 28.2 33.13 27.05 25.87 30.58 22.58 30.50

Table 3. Referring expression segmentation Comparison with weakly-supervised reference expression segmentation methods (Shatter &
Gather) and open-vocabulary segmentation methods (GroupViT and MaskCLIP). The results on three datasets are reported in mIoU (%).
Fine-tuning ✓means that the model is trained with the image-text pairs of the target benchmark; otherwise, the model is trained on the
image-text pretraining dataset, and applied to the reference datasets zero-shot.

sharper masks as compared to the MLP decoder. This experi-
ment verifies that CTRL-O can discover objects in complex
natural scenes. Next, we evaluate whether it can bind to the
region specified by the control queries.

Grounding Object Categories (Table 1) Controllability
is a new paradigm for object-centric models that has not been
explored before. Hence, there are no direct baselines with
which we can compare. Instead, here we try to demonstrate

the difficulty of the grounding problem and ablate over the
components introduced in Section 3 to understand their
importance in achieving good grounding. We use the COCO
dataset for this evaluation. Table 1 presents the results for
various ablations. To obtain an upper bound for grounding
performance, we train a (fully supervised) CTRL-O model
by directly predicting the ground truth masks (first row in
Table 1). While such supervised baseline achieves strong
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segmentation performance (as indicated by ARI and mBO),
it still cannot achieve perfect grounding (close to 100%
Binding Hits), highlighting the difficulty of the grounding
problem. Out of the components introduced in Sec. 3, the
control contrastive loss is the most crucial component for
achieving good grounding accuracy, followed by decoder
conditioning. Without the contrastive loss, the model has
no incentive to utilize the queries; hence, it does not achieve
good Binding Hits values.

Grounding Referring Expressions (Figure 2) For
COCO, we achieved controllability through both center of
mass and category information. However, this approach is
limited: COCO has a fixed number of categories, which
affects generalizability. To overcome this issue, we can rely
on referring expressions, where a user can refer to the target
object using free-form natural language queries. To incor-
porate this ability, we use the Visual Genome dataset [24].
Since Visual Genome does not provide segmentation masks,
we only evaluate CTRL-O qualitatively in this dataset.

We present the qualitative evaluation on Visual Genome
in Fig. 2. We visualize the attention regions of each slot
for a random sample of examples. We observe that slots
conditioned on phrases bind to the object referred to in
the phrase, while the unconditioned slots bind to the other
objects not used for conditioning. The last two rows of the
visualization demonstrate that CTRL-O can decompose the
same scene at different levels of granularity, such as, just
the leg (corresponding to the query “The brown pants worn
by the skier”), just the bag (“The orange bag on the skier’s
back”), or the entire skier (“Man going down ski slope”).

Referring Expression Segmentation Evaluation (Ta-
ble 3) We evaluate CTRL-O trained on Visual Genome on
referring expression segmentation on the RefCOCO, Ref-
COCO+, and Gref datasets. This is a zero-shot evaluation
since these datasets were not used for training. We compare
to various referring expression segmentation baselines, us-
ing mIoU between the predicted and ground truth mask as
the metric. The most relevant baseline is Shatter & Gather
(SaG) [21], which also employs slot attention to extract slots
from the image, followed by cross attention to associate the
referring expression with a slot. One limitation of SaG is
that the referring expression does not directly influence the
slot extraction process. This can be problematic for cases
where the referring expression refers to an object not ex-
tracted by Slot Attention. This is not the case for CTRL-O,
as in CTRL-O the referring expression directly influences
the slot extraction. Moreover, all the baselines mentioned
in Table 3 can only process a single referring expression per
forward pass, while CTRL-O can process multiple referring
expressions in parallel by conditioning multiple slots on the
corresponding expressions. We find that CTRL-O outper-
forms all the baselines. However, CTRL-O by default uses
language queries and center of mass annotations (T + P)

while the baselines use only language queries as weak su-
pervision. Hence, we also run CTRL-O with only language
queries. Implementation details for this variant are provided
in App. C. We find that CTRL-O with only language queries
(T ) achieves competitive performance with SaG.

4.2. Unlocking New Capabilities for Object-Centric
Models with CTRL-O

In this section, we show that CTRL-O can be used for in-
stance controllable image generation (Fig. 3(a)) — a use
case where existing object-centric methods fail. We also
demonstrate how CTRL-O can be used in a novel way to
improve over existing object-centric methods in Visual Ques-
tion Answering (VQA) (Fig. 3(b)). In these experiments,
we use CTRL-O pre-trained on both Visual Genome and
COCO with language-only conditioning (referring expres-
sions in Visual Genome and Object Categories in COCO).

4.3. Instance Controllable Image Generation
In this section, our goal is to demonstrate that object-centric
representations obtained from CTRL-O can be used for
controllable image generation. Specifically, we aim for con-
trol in the space of instances where specific instances can
be extracted from images and used as a conditioning for
generating images containing those instances. Prior works,
such as SlotDiffusion [44] and Stable-LSD [19], use Sta-
ble Diffusion [38] as a decoder to reconstruct images from
slot vectors. These models condition the U-Net in Stable
Diffusion on slots obtained from Slot Attention, enabling
slot-conditional generation. However, these approaches are
fundamentally limited: 1) To control the instances in the
generated image, the user needs to manually reconstruct the
masks corresponding to all the slots and find target slots that
correspond to instances of interest. 2) They fix the diffusion
model to a fixed number of slots, as in Slot Attention, limit-
ing flexibility. Users cannot condition on a subset of objects
while leaving the image layout flexible, and text inputs are
unsupported.

CTRL-O addresses the above limitations: 1) Language-
based control is inherent to CTRL-O. Hence, to control the
instances present in the generated image, a user needs only
to query CTRL-O to extract the corresponding instance rep-
resentations from a given image as shown in Fig. 3(a). 2) We
maintain the text interface of Stable Diffusion and only add
the slots to control the visual identity of specific instances.
This is similar to [47] where a user can specify an image
containing an object for instance controlled generation. Here
instead of specifying images, we use slots obtained from
CTRL-O for this task. For example, prompting Stable Dif-
fusion with “A photo of a bus” generates a random bus. But
if we want a specific bus as in Fig. 3(a), we use CTRL-O
to extracts its representation from an image, allowing us to
prompt the diffusion model with “A photo of a bus. Sbus”,
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A photo of a
bus

(a)

CLIP

Bus
CTRL-O

U-Net

Dec.

Stable Diffusion Gray ✅(b)

?

T5

on the couch

What is the color of the
cat                 sitting on

Cat

Couch

CTRL-O

Transformer

Figure 3. (a) Instance Specific Image Generation: we query an image to extract slot representations of instances required in the generated
image. The slot corresponding to that instance is then fed into a Stable Diffusion model along with the caption to generate the corresponding
image. (b) Visual Question Answering: we embed the slots directly into the question. Given a question, we parse it into a set of noun
chunks or referring expressions and use them to extract the corresponding representations with the CTRL-O. The slots are then embedded
into the appropriate positions into the text and fed into the language model. = frozen parameters; = trainable parameters.

where Sbus is obtained from CTRL-O.

CTRL-O-SD A visual depiction of our generation
pipeline is presented in Fig. 3(a). We keep CTRL-O frozen.
We use stable diffusion as the generative model [38]. We
finetune the U-Net in Stable Diffusion while keeping the
rest of the components fixed. The COCO dataset is used
for finetuning. We feed the model captions as conditioning
inputs. We take the category names present in the caption
and extract the corresponding slots using CTRL-O. We
then project the slots into CLIP embeddings space and
append them to the language caption as shown Fig. 3(a). We
refer to the proposed pipeline as CTRL-O-Stable Diffusion
(CTRL-O-SD). Note that this is different to the approach
adopted in Stable LSD where the slot attention module is
trained in conjunction with the diffusion model. Therefore,
we treat generation as a downstream task for CTRL-O while
Stable LSD uses diffusion to train the object-centric model.

Results (Figure 4, Table 4, and Table 5) We first com-
pare CTRL-O-SD to an existing object-centric method -
Stable LSD - in terms of generative quality as measured by
Fréchet Inception Distance (FID). Note that we can only
compare CTRL-O-SD to Stable LSD in terms of image
generation quality since Stable LSD lacks controllability
and hence cannot be compared to CTRL-O-SD along that
axis. We find that CTRL-O-SD achieves higher generation
quality than Stable LSD as evidenced by the lower FID in
Table 4. Next, we evaluate CTRL-O-SD along the axis of
instance controllability in the generated output on the COCO

validation set. Here we use Stable Diffusion for comparison.
For Stable Diffusion, we feed the captions as conditioning
while for CTRL-O-SD, we feed the captions along with
slots extracted from the ground truth images from the COCO
validation set by conditioning them on the categories present
in the caption. We report the CLIP-I Score metric, which
measures the cosine similarity between the CLIP vision em-
bedding of the generated and the ground truth images (see
further details in App. H.2). Table 5 shows that CTRL-O-
SD achieves a higher CLIP-I Score, thus exhibiting stronger
instance controllability.

Method FID Score (↓)

LSD [19] 26.20
CTRL-O 25.20

Table 4. Stable LSD Comparison We compare CTRL-O and
Stable LSD in terms of image generation quality. We find that
CTRL-O achieves a lower FID as compared to LSD.

We also visualize the generated images from CTRL-O-
SD and SD in Figure 4. We can see that the images generated
using CTRL-O-SD contain instances that are closer to the
query image. We also show that CTRL-O-SD can compose
slots corresponding to two different categories “A bench”
and “A pizza” from two different images, to produce an im-
age specified by “A pizza on a bench. SBench SPizza”. We
showcase some failure modes of CTRL-O-SD in App. H.4.

7



a. Instance Controllable Image Generation

b. Multi-Instance Composition
A pizza on the 
bench

A bird and a 
truck 

SDCTRL-O-SD SDCTRL-O-SD
Laptop Teddy Bear

BananaBus

Chair, D. Table, 
Mouse

SDCTRL-O-SD

Couch Skis

A surfboard 
leans against a 
bicycle parked 
near a potted 
plant.

A cat sits on a 
bench, staring 
at a bird nearby.

A TV is mounted 
under a clock, 
with a couch and 
a bottle nearby.

A laptop by the 
window

Figure 4. a. Instance Controllable Image Generation. Comparison between CTRL-O-SD and the baseline Stable Diffusion (SD). For
a given query image (marked query ), we extract a slot representation of a specific instance Iq (e.g., laptop, bus, banana). In CTRL-O-SD,
the input is “A photo of Iq . SIq” to guide instance generation, while for SD, only “A photo of Iq” is used. Our approach produces images
that more closely match the visual identity of the conditioned instance b. Multi-Instance Composition. We extract instances from multiple
images (e.g., “bench” and “pizza”) and compose them into a single image, as seen with “the pizza on the bench”.

In these cases, CTRL-O struggles to bind to the correct ob-
ject specified by the query, and the diffusion model exhibits
issues with object deformation and repetitions.

4.4. Visual Questions Answering
Here we consider the task of Visual Question Answering on
the VQAv2 dataset [13]. We treat this problem as a classifi-
cation problem and use accuracy as the metric. Language-
guided object-centric representations from CTRL-O can
potentially provide a much stronger coupling between the
vision and language inputs in VQA. To achieve this, we

propose to directly insert the slots into the question before
feeding it into the language model. The proposed approach is
presented in Fig. 3(b). Given a question, we first use spaCy
to extract noun chunks (e.g., Cat, Couch) for the image,
which are then used to condition the slots in CTRL-O to
extract the corresponding slots. These slots are then inserted
into the question at the appropriate positions as shown in
Fig. 3(b). For example, the question “What is the color of
the cat sitting on the couch?” becomes “What is the color
of the cat Scat sitting on the couch Scouch?”. We use a
learnable linear projection to map the slots to the same di-
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Method CLIP-I Score (↑)

SD [38] 0.71
CTRL-O 0.78

Table 5. Stable Diffusion Comparison We compare CTRL-O
to Stable Diffusion on Instance Controllable Image Generation.
CLIP-I score measures the cosine similarity in the CLIP Image
embedding space between the generated and the query image. We
can see that CTRL-O achieves a higher CLIP-I score, showing that
the generated instances are closer to those in the query image.

mension as the T5 embeddings. We feed this question, with
the inserted slots, into the language model. Therefore, the
language and vision inputs are strongly coupled from the
input stage, which allows for more interaction between vi-
sual and language components. We refer to this technique as
coupling. This technique is reminiscent of adding additional
learnable tokens as input to the language model [25].

Model No-Coupling Coupling
DINOv2 (22M) 58.26 58.12
CLIP (191M) 58.43 58.64
DINOSAUR (37M) 58.32 57.66
CTRL-O (39M) 59.18 60.25

Table 6. VQA performance on VQAv2. We report the stan-
dard VQA accuracy metric along with the number of parameters
per model (in parentheses). Our proposed (CTRL-O) achieves
the highest accuracy in both No-Coupling and Coupling settings,
demonstrating its effectiveness.

Setup Our full pipeline is shown in Fig. 3(b), inspired
by [29]. We use T5 as the language embedding model, and
the vision model is CTRL-O. For the baselines, we use
CLIP [37], DINOv2 [33], and DINOSAUR [39] as the vision
models. The output network is a transformer with 2 layers
and 64 heads. For all methods, we feed visual representations
(patches for CLIP and DINOv2 and slots for CTRL-O and
DINOSAUR) and the language embeddings from T5 into the
output network. The output network is trained from scratch,
while T5 undergoes fine-tuning.

We introduce two variants of VQA training with
CTRL-O: 1) CTRL-O that directly feeds the slots into the
Transformer output network without embedding them in the
language, similar to baseline methods; 2) CTRL-O (with
coupling) that inserts the corresponding slot representations
into the appropriate place in the question as shown in
Fig. 3(b). To ensure a fair comparison, we extend coupling
experiments to all baselines. Since these models lack explicit
object binding, we insert their aggregated features (CLS
token for DINOv2/CLIP and slot mean for DINOSAUR)
into the same positions as CTRL-O ’s control slots. This
allows us to assess how different representations interact

with language. Classification accuracy is reported (see
details in Appendix G).

Results Table 6 shows that both CTRL-O variants out-
perform all baselines, demonstrating the effectiveness of its
object-centric representations. Notably, coupling primarily
benefits CTRL-O, as its representations explicitly align with
language. In contrast, baselines insert generic image repre-
sentations that do not naturally correspond to the preceding
text, limiting the effectiveness of coupling. However, while
our method improves performance, it remains below the lat-
est state-of-the-art models (>80%) [27], which leverage large
language models (LLMs) and web-scale multimodal data.

5. Conclusion

We have introduced CTRL-O, a controllable object-centric
model that can be queried to extract representations of spe-
cific objects in a scene. We experimentally showed that
representations of specific objects can be extracted in com-
plex real-world scenes based on a range of user queries
such as object category names and referring expressions.
This capability expands the applicability of object-centric
models to various real-world applications, such as instance-
controllable image generation and visual question answering.
Therefore, our work takes a step towards improving the ap-
plicability of object-centric models to complex real-world
downstream tasks. Future work should explore how to im-
prove the grounding of these models. The current approach,
while useful, is still limited since it does not achieve perfect
grounding. Moreover, we hope that learning controllable
object-centric representations becomes the standard way of
learning object-centric representations and leads to broader
adoption of object-centric models to various domains and
downstream tasks.
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CTRL-O: Language-Controllable Object-Centric Visual Representation
Learning

Supplementary Material

A. DINOSAUR Implementation Details
DINOSAUR uses a DINO [4] encoder to process the image
into features. It relies on a feature reconstruction loss to
supervise the object discovery process. Throughout the train-
ing, the DINO encoder is kept frozen. We adopt a similar
approach, however we use a DINOv2 [33] encoder instead
of a DINO encoder. Figure 5 illustrates the DINOSAUR ar-
chitecture with a DINOv2 backbone. Additionally, we have
added a learnable mapping network g, which is a 3-layer
Transformer after the frozen DINOv2 encoder. SA module is
applied on top of the mapping output as shown in Figure 1(a).

B. CTRL-O Implementation Details

Algorithm 1 Slot Attention with Language Conditioning
Input: inputs ∈ RN×Dinputs , slots ∈
RK×Dslot , language queries ℓ ∈ RM×Dlang

Layer params: k, q, v: linear projections for attention; pℓ:
projection for language query; GRU; MLP; LayerNorm (x3)

1: inputs← LayerNorm(inputs)
2: ℓproj ← pℓ(ℓ) ▷ Project M language queries to slot

dimension
3: {slots}Mi=1 ← ℓproj ▷ Condition first M slots on

language query
4: for t = 0 . . . T − 1 do
5: slotsprev ← slots
6: slots← LayerNorm(slots)
7: attn ← Softmax( 1√

D
k(inputs) · q(slots)⊤ axis =

slots)
8: updates ← WeightedMean(weights = attn +

ϵ, values = v(inputs))
9: slots← GRU(state = slotsprev, inputs = updates)

10: slots← slots + MLP(LayerNorm(slots))
11: end for
12: return slots

We present the modified Slot Attention with query-based
initialization in Algorithm 1.

Control Contrastive Loss For conditioning, we mainly
use language queries. However, we assume that each image
in our dataset consists of multiple object annotations, each
containing a center of mass annotation and a category or

referring expression annotation. Therefore, we have two
separate contrastive losses - one each for the language infor-
mation and the point information, as shown in Figure 1(b).

Conditioning We run Slot Attention for a fixed number of
slots K. However, in general, we may not have K queries
per image. In such cases, we initialize a subset of the slots
with the given queries, and the rest are free to bind to any
of the other objects in the scene (see line 3 of Algorithm 1).
When computing the contrastive loss, we only consider slots
conditioned on some query.

C. Training CTRL-O with Language Queries
Needing center of mass annotations for the contrastive loss
can be a limitation as these annotations may not be available
in many datasets. Further, the main baseline that we consider
for the referring expression segmentation task (Section 4.1)
- Shatter-and-Gather [21] - does not require center of mass
annotations. Therefore, for an apples-to-apples comparison,
we implement a variant of CTRL-O which does not require
center of mass annotations.

A visual depiction of this approach is presented in Fig-
ure 7. First, we remove additional center-of-mass informa-
tion and leave only language queries in the contrastive loss.
We find that simply removing the center-of-mass informa-
tion leads to collapse of representations as the contrastive
loss can be trivially satisfied by directly using the language
embeddings on which the slots are conditioned on - we
term this as leakage. To prevent leakage we propose to
use CLIP [37] image features and language embeddings in
the control contrastive loss. In particular, instead of taking
the weighted average of DINO features (Figure 1(a)), we
take the weighted average of patch-based CLIP features [11].
The slot conditioning still uses language embeddings from
LLaMa-3-8B [2], however, CLIP language embeddings are
used as targets in the contrastive loss. This way, CTRL-O
learns to bind to the correct regions in the image specified
by language queries without center-of-mass annotations.

D. Choice of Decoder for CTRL-O
In this subsection, we additionally study the compatibility of
CTRL-O with different previously proposed decoders. In
particular, we investigate the compatibility and scalability of
our method with two different decoder architectures (MLP
and Transformer). In Table 2, we compare our method with
other OCL methods, showing that while our method strongly
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Figure 5. Overview of DINOSAUR architecture. The image is processed into a set of patch features H by a frozen DINO ViT model. The Slot
Attention module groups the encoded features into a set of slots initialized by random queries sampled from the same Gaussian distribution
with learnable parameters. By contrast, CTRL-O is initialized by the combination of control queries for conditioned slots and random
queries for unconditioned slots. DINOSAUR is trained by reconstructing the DINO features from the slots using MLP decoder [39].

outperforms other methods in FG-ARI, its mask quality is
lower than methods with stronger (pretrained) diffusion and
Transformer decoders that have less inductive bias towards
scene decomposition. Thus, it is important to investigate how
our method performs with different decoders and whether
we can scale MLP decoders for better mask quality. Object
discovery with the Transformer decoder was shown to be
sensitive to hyperparameters and can entirely fail (see App.
D.4 and D.5 of DINOSAUR paper [39]). Subsequently, we
also find that CTRL-O with Transformer decoder achieves
10.2 mBO. Through thorough investigation, we conclude
that Transformer decoder is not compatible with contrastive
loss, which is needed for language controllability in CTRL-O
but not in the baselines. Thus, to improve masks quality we
propose to scale the MLP decoder itself; scaling MLP dim
to 4096 led to improved 28.0 mBO and 47.9 FG-ARI.

E. Referring Expression Visualization

In Figure 6, we compare the visualizations obtained from
CTRL-O (L+P setting), CTRL-O (L setting), and Shatter-
and-Gather (SaG). Note that the queries listed on the top of
each column are free-form queries created by a user and may
not be similar to those typically found in the visual genome
dataset. One potential issue with Shatter-and-Gather is that
the language queries do not influence the slot extraction
process - Slot attention first extracts a fixed number of slots,
after which the query binds to the most relevant slot post-
hoc. This can be limiting, as in some cases, the region
referred to by the query may not be extracted into a single
slot. In such cases, the language query may not bind to any
slot. In Figure 6, we find that this is exactly what happens in
several cases for Shatter-and-Gather. For example, in the first
column, for the query “The orange bag on the skier’s bag”,
SaG binds to the skier’s shoes. In the 5th column, SaG fails

to bind to any region for the query “the lamp”. In contrast,
both variants of CTRL-O frequently bind to the correct
regions specified by the queries. Secondly, in CTRL-O the
language queries directly influence slot extraction which
allows it to explicitly extract the referred regions from the
image and bind to them.

A particularly interesting case is the last row for
CTRL-O (L), where it learns to bind correctly even though
queries are less specific and more subjective - “the ancient
building” and “the new building”. This emphasizes the gen-
eralizability of CTRL-O to complex language queries.

F. Object Discovery and Binding Metrics
FG-ARI The adjusted rand index (ARI) measures the
similarity between two clusterings [18]. We use the in-
stance/object masks as the targets. We only compute this
metric for pixels in the foreground (hence, FG-ARI). Unla-
beled pixels are treated as background.

mBO To compute the mBO [36], each ground truth mask
(excluding the background mask) is assigned to the predicted
mask with the largest overlap in terms of IoU.The mBO is
computed as the average IoU of these mask pairs.

Binding Hits This metric measures controllable grounding.
For binding hits, consider that a slot si is conditioned on a
query Li identifying an object oi with ground-truth mask mi.
The broadcast decoder of slot attention outputs a mask per
slot. If the overlap between the predicted mask for slot si,
denoted as m̂i, and the ground truth mask mi is the highest
among all pairs of predicted and ground truth masks, it is
considered as a hit (1) else it is considered as a miss (0).
Binding Hits metric is measured as the average number of
hits across the dataset.
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Figure 6. Visualization Comparison In this figure we visualize and compare the masks obtained using CTRL-O (L+ P), CTRL-O (L),
and SaG when queried with free-form language queries. We can see that both the variants based on CTRL-O are significantly better at
binding to the correct region descriptions as compared to SaG. This difference can be attributed CTRL-O using the language guidance to
directly influence the slot extraction process while SaG considers the langauge to slot binding as a post-processing step after the slots have
been extracted. 3



Figure 7. Language-Only CTRL-O Overview of language-only training. In this setting, we use the frozen CLIP model to compute both
weighted CLIP slots and CLIP Language queries that we use in control contrastive loss. We average features from CLIP using attention
weights from the Slot Attention module.

G. Additional Details of VQA Experiments

Evaluation Metric. We evaluate VQA models using classi-
fication accuracy across 3000 classes, using the top-frequent
answers, which covers more than 90% of the question in the
dataset.

Discussion on Coupling in CTRL-O VQA model The
standard approach for solving VQA tasks with pretrained
vision and language backbones is to feed the output rep-
resentations of the vision model and the language model
into a single neural network - usually a Transformer [42] -
which then outputs a distribution over the answer categories
[8, 29, 30]. To solve VQA, it is crucial to have strong inter-
action between the visual and language inputs. However, in
pre-existing approaches, this interaction only happens in the
output network (the Transformer that processes the language
and vision outputs), which can be limiting.

To address this, we introduce an approach called coupling.
Coupling, with the help of CTRL-O, directly inserts the
visual representations into the language query, thus enabling
strong vision and language interaction from the input stage.
The proposed approach is presented in Figure 3(b).

H. CTRL-O SD

H.1. Fine-Tuning Details

In CTRL-O-SD, we finetune a pretrained
Stable Diffusion model initialized from the
stabilityai/stable-diffusion-2-1 check-
point. As illustrated in Figure 3(a), CTRL-O extracts slots
from a given image based on user-provided queries. These
extracted slots are then incorporated into the caption, which
is fed into Stable Diffusion. Notably, CTRL-O remains
frozen during the fine-tuning process, distinguishing our
approach from prior works like Slot Diffusion [44] and
Stable LSD [19], where the object-centric model and the
diffusion model are trained jointly.

Implementation Details We train the model on the COCO
2017 training set. For each image, we first extract COCO
categories from its associated caption and use these cate-
gories to query CTRL-O, to generate the corresponding
slots. These slots are subsequently appended to the cap-
tion, as shown in Figure 3(a). The resulting caption is then
passed through the CLIP language encoder to condition Sta-
ble Diffusion. To integrate CTRL-O outputs into the CLIP
language embedding space, we introduce a learnable linear
layer that maps the extracted slots to the CLIP embedding
space. During training, the only components updated are the
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U-Net parameters of Stable Diffusion. We use random flips
as a data augmentation strategy. Training is performed for
300 epochs with a learning rate of 2× 10−5, utilizing gradi-
ent accumulation with 2 steps. Additionally, we reproduce
Stable LSD using the author-provided code and hyperpa-
rameters on the COCO dataset. The input resolution to the
vision encoder for CTRL-O is 224×224, while Stable LSD
uses 448× 448.

H.2. Image Generation Metrics
Fréchet Inception Distance (FID) score We calculate the
Fréchet Inception Distance (FID) score [17] to assess the
quality of generated images in comparison to real images.
The FID score computes the Fréchet distance between fea-
ture distributions of generated and real images, extracted via
an Inception v3 model. Lower FID scores indicate a closer
match to real images, corresponding to higher image fidelity
and diversity.

CLIP-I Score We use CLIP-I Score to verify whether
the generated images contain the same instances present
in the query image. This should be the expected be-
havior of CTRL-O-SD when conditioned on a caption
containing slots corresponding to specific instances. We
compute this metric on the COCO validation set. We
embed the generated image and the query image into
the CLIP embedding space using the CLIP ViT Encoder
(openai/clip-vit-base-patch16). We then com-
pute the cosine similarity between the two embeddings. This
similarity is averaged across all images to compute the final
CLIP-I Score.

H.3. Image Reconstruction Visualization
In this section, we present a qualitative analysis of the recon-
struction capabilities of the LSD and CTRL-O-SD models.
The goal is to evaluate how effectively these models retain
structural and semantic details. LSD provides the full 7-slot
representation derived from the object-centric model to the
generative model, providing comprehensive image context
for reconstruction. In contrast, CTRL-O-SD provides the
caption along with only a subset of slots corresponding to
the categories in the caption to the generative model. To ob-
tain these slots, we condition the slots in CTRL-O with the
categories present in the caption and append the correspond-
ing slots to the caption. This flexibility in CTRL-O-SD
enables instance-specific image generation (see Fig. 4 for
examples), which is not feasible with Stable LSD. As il-
lustrated in Fig. 8, both models demonstrate comparable
reconstruction quality.

H.4. Image Generation Failures
In this section we highlight some failure cases of CTRL-O-
SD.

• Incorrect Focus: The model occasionally fails to accu-
rately prioritize the main objects in the query, often divert-
ing attention to irrelevant elements. For instance, when
prompted to generate an image centered around a cell
phone, the model might emphasize a person in the back-
ground instead. As we have seen from Table 1, CTRL-O
does not achieve perfect binding. Hence, this failure can
be caused by the slots not binding to the correct regions in
the image.

• Deformed Outputs: The model sometimes generates dis-
torted representations of people and animals, with unnatu-
ral proportions or malformed features. Such deformities
highlight limitations in the model’s ability to represent
detailed anatomy accurately, indicating a need for refined
control over complex shapes and structures. This failure
may also be attributed to the failures of the underlying
generative model rather than CTRL-O.

• Object Duplication: There are instances where the model
replicates objects within a single scene, leading to unreal-
istic and cluttered outputs.
These failure modes suggest areas for further improve-

ment for CTRL-O and CTRL-O-SD, particularly in ob-
ject binding for CTRL-O and image generation quality for
CTRL-O-SD.
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Figure 8. Image Reconstruction Qualitative comparisons of reconstruction outputs for LSD and CTRL-O-SD models. Each column
corresponds to a different image. Rows correspond to original inputs, LSD generations, and CTRL-O-SD generations respectively. LSD
generates outputs conditioned on full 7-slot representations derived from the original image, while CTRL-O-SD uses captions appended
with a subset of slots for conditioning. The results show that both models achieve similar reconstruction quality.
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Figure 9. Failure Modes of CTRL-O SD. Examples highlighting some failures in CTRL-O-SD such as incorrect focus, deformities in
representations of people or animals, and object duplication. Each labeled box illustrates specific instances of these failures.
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